Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 920: 170907, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350579

RESUMO

Mycorrhizal associations are considered as one of the key drivers for soil carbon (C) accumulation and stability. However, how mycorrhizal associations influence soil organic C (SOC) and its fractions (i.e., particulate organic C [POC] and mineral-associated organic C [MAOC]) remain unclear. In this study, we examined effects of plant mycorrhizal associations with arbuscular mycorrhiza (AM), ectomycorrhiza (ECM), and their mixture (Mixed) on SOC and its fractions as well as soil stoichiometric ratios across 800-km transect in permafrost regions. Our results showed that soil with only ECM-associated trees had significantly higher SOC and POC compared to only AM-associated tree species, while soil in Mixed plots with both AM- and ECM- associated trees tend to be somewhat in the middle. Using structural equation models, we found that mycorrhizal association significantly influenced SOC and its fraction (i.e., POC, MAOC) indirectly through soil stoichiometric ratios (C:N, C:P, and N:P). These results suggest that selecting ECM tree species, characterized by a "slow cycling" nutrient uptake strategy, can effectively enhance accumulation of SOC and its fractions in permafrost forest ecosystems. Our findings provide novel insights for quantitatively assessing the influence of mycorrhiza-associated tree species on the management of soil C pool and biogeochemical cycling.


Assuntos
Micorrizas , Pergelissolo , Solo/química , Ecossistema , Carbono , Nitrogênio , Florestas , Árvores , Minerais , Microbiologia do Solo
2.
Nature ; 625(7994): 241, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38195873
3.
Sci Total Environ ; 897: 166171, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37582442

RESUMO

Biochar has been shown to reduce soil greenhouse gas (GHG) and increase nutrient retention in soil; however, the interaction between biochar and organic amendments on GHG emissions remain largely unclear. In this study, we collected 162 two-factor observations to explore how biochar and organic amendments jointly affect soil GHG emissions. Our results showed that biochar addition significantly increased soil CO2 emission by 8.62 %, but reduced CH4 and N2O emissions by 27.0 % and 23.9 %, respectively. Meanwhile, organic amendments and the co-application with biochar resulted in an increase of global warming potential based on the 100-year time horizon (GWP100) by an average of 18.3 % and 26.1 %. More importantly, the interactive effect of biochar and organic amendments on CO2 emission was antagonistic (the combined effect was weaker than the sum of their individual effects), while additive on CH4 and N2O emissions. Additionally, our results suggested that when biochar is co-applied with organic amendments, soil GHG emissions were largely influenced by soil initial total carbon, soil texture, and biochar feedstocks. Our work highlights the important interactive effects of biochar and organic amendments on soil GHG emissions, and provides new insights for promoting ecosystem sustainability as well as mitigating future climate change.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Solo , Ecossistema , Dióxido de Carbono/análise , Óxido Nitroso/análise , Carvão Vegetal , Metano/análise , Agricultura/métodos
4.
Glob Chang Biol ; 29(12): 3476-3488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931867

RESUMO

Root exudates are an important pathway for plant-microbial interactions and are highly sensitive to climate change. However, how extreme drought affects root exudates and the main components, as well as species-specific differences in response magnitude and direction, are poorly understood. In this study, root exudation rates of total carbon (C) and its components (e.g., sugar, organic acid, and amino acid) were measured under the control and extreme drought treatments (i.e., 70% throughfall reduction) by in situ collection of four tree species with different growth rates in a subtropical forest. We also quantified soil properties, root morphological traits, and mycorrhizal infection rates to examine the driving factors underlying variations in root exudation. Our results showed that extreme drought significantly decreased root exudation rates of total C, sugar, and amino acid by 17.8%, 30.8%, and 35.0%, respectively, but increased root exudation rate of organic acid by 38.6%, which were largely associated with drought-induced changes in tree growth rates, root morphological traits, and mycorrhizal infection rates. Specifically, trees with relatively high growth rates were more responsive to drought for root exudation rates compared with those with relatively low growth rates, which were closely related to root morphological traits and mycorrhizal infection rates. These findings highlight the importance of plant growth strategy in mediating drought-induced changes in root exudation rates. The coordinations among root exudation rates, root morphological traits, and mycorrhizal symbioses in response to drought could be incorporated into land surface models to improve the prediction of climate change impacts on rhizosphere C dynamics in forest ecosystems.


Assuntos
Ecossistema , Micorrizas , Raízes de Plantas/metabolismo , Secas , Florestas , Micorrizas/metabolismo , Árvores , Exsudatos e Transudatos/metabolismo , Compostos Orgânicos/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Solo/química , Açúcares/análise , Açúcares/metabolismo , Exsudatos de Plantas/análise , Exsudatos de Plantas/metabolismo
5.
Ecology ; 104(2): e3877, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36178039

RESUMO

Subtropical evergreen broadleaf forests (SEBF) are experiencing and expected to suffer more frequent and severe drought events. However, how the hydraulic traits directly link to the mortality and recovery of SEBF trees remains unclear. In this study, we conducted a drought-rewatering experiment on tree seedlings of five dominant species to investigate how the hydraulic traits were related to tree mortality and the resistance and recovery of photosynthesis (A) and transpiration (E) under different drought severities. Species with greater embolism resistance (P50 ) survived longer than those with a weaker P50 . However, there was no general hydraulic threshold associated with tree mortality, with the lethal hydraulic failure varying from 64% to 93% loss of conductance. The photosynthesis and transpiration of tree species with a greater P50 were more resistant to and recovered faster from drought than those with lower P50 . Other plant traits could not explain the interspecific variation in tree mortality and drought resistance and recovery. These results highlight the unique importance of embolism resistance in driving carbon and water processes under persistent drought across different trees in SEBFs. The absence of multiple efficient drought strategies in SEBF seedlings implies the difficulty of natural seedling regeneration under future droughts, which often occurs after destructive disturbances (e.g., extreme drought events and typhoon), suggesting that this biome may be highly vulnerable to co-occurring climate extremes.


Assuntos
Embolia , Árvores , Secas , Florestas , Ecossistema , Água , Plântula , Folhas de Planta
6.
Sci Total Environ ; 863: 160775, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36509268

RESUMO

Elevated atmospheric CO2 concentrations [CO2] potentially alter carbon (C) and phosphorus (P) cycles in terrestrial ecosystems. Although numerous field experiments and a few meta-analyses have been conducted, it is still largely unclear how the P cycle affects plant biomass responses under elevated [CO2] globally. Here, we conducted a global synthesis by analyzing 111 studies on the responses of above- and belowground P cycling to elevated [CO2], to examine how changes in the P cycle affect the plant biomass response to elevated [CO2]. Our results show that elevated [CO2] significantly increased plant aboveground biomass (+13 %), stem biomass (+4 %), leaf biomass (+11 %), belowground biomass (+12 %), and the root: shoot ratio (+7 %). Effects of elevated [CO2] on aboveground biomass, belowground biomass, and root: shoot ratio were best explained by plant P uptake. In addition, elevated [CO2]-induced changes in the aboveground P pool, leaf P pool, and leaf P concentration were modulated by ecological drivers, such as ΔCO2, experimental duration, and aridity index. Our findings highlight the importance of plant P uptake for both above- and belowground plant biomass responses under elevated [CO2], which should be considered in future biosphere models to improve predictions of terrestrial carbon-climate feedbacks.


Assuntos
Biomassa , Dióxido de Carbono , Plantas , Carbono/análise , Dióxido de Carbono/análise , Ecossistema , Fósforo/metabolismo , Plantas/metabolismo , Solo/química
7.
Glob Chang Biol ; 29(4): 1178-1187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36371668

RESUMO

Multiple lines of existing evidence suggest that increasing CO2 emission from soils in response to rising temperature could accelerate global warming. However, in experimental studies, the initial positive response of soil heterotrophic respiration (RH ) to warming often weakens over time (referred to apparent thermal acclimation). If the decreased RH is driven by thermal adaptation of soil microbial community, the potential for soil carbon (C) losses would be reduced substantially. In the meanwhile, the response could equally be caused by substrate depletion, and would then reflect the gradual loss of soil C. To address uncertainties regarding the causes of apparent thermal acclimation, we carried out sterilization and inoculation experiments using the soil samples from an alpine meadow with 6 years of warming and nitrogen (N) addition. We demonstrate that substrate depletion, rather than microbial adaptation, determined the response of RH to long-term warming. Furthermore, N addition appeared to alleviate the apparent acclimation of RH to warming. Our study provides strong empirical support for substrate availability being the cause of the apparent acclimation of soil microbial respiration to temperature. Thus, these mechanistic insights could facilitate efforts of biogeochemical modeling to accurately project soil C stocks in the future climate.


Assuntos
Microbiologia do Solo , Solo , Processos Heterotróficos , Aquecimento Global , Aclimatação , Temperatura , Carbono , Respiração
8.
Nat Commun ; 13(1): 4914, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987902

RESUMO

Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Yet, our knowledge regarding warming effects on root: shoot ratio (R/S) remains limited. Here, we present a meta-analysis encompassing more than 300 studies and including angiosperms and gymnosperms as well as different biomes (cropland, desert, forest, grassland, tundra, and wetland). The meta-analysis shows that average warming of 2.50 °C (median = 2 °C) significantly increases biomass allocation to roots with a mean increase of 8.1% in R/S. Two factors associate significantly with this response to warming: mean annual precipitation and the type of mycorrhizal fungi associated with plants. Warming-induced allocation to roots is greater in drier habitats when compared to shoots (+15.1% in R/S), while lower in wetter habitats (+4.9% in R/S). This R/S pattern is more frequent in plants associated with arbuscular mycorrhizal fungi, compared to ectomycorrhizal fungi. These results show that precipitation variability and mycorrhizal association can affect terrestrial carbon dynamics by influencing biomass allocation strategies in a warmer world, suggesting that climate change could influence belowground C sequestration.


Assuntos
Micorrizas , Biomassa , Carbono , Ecossistema , Micorrizas/fisiologia , Raízes de Plantas , Plantas/microbiologia
9.
Adv Sci (Weinh) ; 9(18): e2201144, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35470591

RESUMO

The long-term contribution of global forest restoration to support multiple dimensions of biodiversity and ecosystem function remains largely illusive across contrasting climates and forest types. This hampers the capacity to predict the future of forest rewilding under changing global climates. Here, 120 studies are synthesized across five continents, and it is found that forest restoration promotes multiple dimensions of biodiversity and ecosystem function such as soil fertility, plant biomass, microbial habitat, and carbon sequestration across contrasting climates and forest types. Based on global relationship between stand age and soil organic carbon stock, planting 350 million hectares of forest under the UN Bonn Challenge can sequester >30 Gt soil C in the surface 20 cm over the next century. However, these findings also indicate that predicted increases in temperature and reductions in precipitation can constrain the positive effects of forest rewilding on biodiversity and ecosystem function. Further, important tradeoffs are found in very old forests, with considerable disconnection between biodiversity and ecosystem function. Together, these findings provide evidence of the importance of the multidimensional rewilding of forests, suggesting that on-going climatic changes may dampen the expectations of the positive effects of forest restoration on biodiversity and ecosystem function.


Assuntos
Carbono , Ecossistema , Florestas , Plantas , Solo , Temperatura
10.
Phys Rev E ; 103(5-1): 052409, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134257

RESUMO

We study the dynamics of genetic code evolution. The model of Vetsigian et al. [Proc. Natl. Acad. Sci. USA 103, 10696 (2006)PNASA60027-842410.1073/pnas.0603780103] and Vetsigian [Collective evolution of biological and physical systems, Ph.D. thesis, 2005] uses the mechanism of horizontal gene transfer to demonstrate convergence of the genetic code to a near universal solution. We reproduce and analyze the algorithm as a dynamical system. All the parameters used in the model are varied to assess their impact on convergence and optimality score. We show that by allowing specific parameters to vary with time, the solution exhibits attractor dynamics. Finally, we study automorphisms of the genetic code arising due to this model. We use this to examine the scaling of the solutions to re-examine universality and find that there is a direct link to mutation rate.

11.
PLoS One ; 16(5): e0250227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33951035

RESUMO

Realistic evolutionary fitness landscapes are notoriously difficult to construct. A recent cutting-edge model of virus assembly consists of a dodecahedral capsid with 12 corresponding packaging signals in three affinity bands. This whole genome/phenotype space consisting of 312 genomes has been explored via computationally expensive stochastic assembly models, giving a fitness landscape in terms of the assembly efficiency. Using latest machine-learning techniques by establishing a neural network, we show that the intensive computation can be short-circuited in a matter of minutes to astounding accuracy.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Montagem de Vírus , Mutação , Fenótipo
12.
Glob Chang Biol ; 25(3): 1119-1132, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30466147

RESUMO

Predicting future carbon (C) dynamics in grassland ecosystems requires knowledge of how grazing and global climate change (e.g., warming, elevated CO2 , increased precipitation, drought, and N fertilization) interact to influence C storage and release. Here, we synthesized data from 223 grassland studies to quantify the individual and interactive effects of herbivores and climate change on ecosystem C pools and soil respiration (Rs). Our results showed that grazing overrode global climate change factors in regulating grassland C storage and release (i.e., Rs). Specifically, grazing significantly decreased aboveground plant C pool (APCP), belowground plant C pool (BPCP), soil C pool (SCP), and Rs by 19.1%, 6.4%, 3.1%, and 4.6%, respectively, while overall effects of all global climate change factors increased APCP, BPCP, and Rs by 6.5%, 15.3%, and 3.4% but had no significant effect on SCP. However, the combined effects of grazing with global climate change factors also significantly decreased APCP, SCP, and Rs by 4.0%, 4.7%, and 2.7%, respectively but had no effect on BPCP. Most of the interactions between grazing and global climate change factors on APCP, BPCP, SCP, and Rs were additive instead of synergistic or antagonistic. Our findings highlight the dominant effects of grazing on C storage and Rs when compared with the suite of global climate change factors. Therefore, incorporating the dominant effect of herbivore grazing into Earth System Models is necessary to accurately predict climate-grassland feedbacks in the Anthropocene.


Assuntos
Ciclo do Carbono , Mudança Climática/estatística & dados numéricos , Pradaria , Herbivoria/fisiologia , Gado/fisiologia , Animais , Carbono/análise , Carbono/metabolismo , Monitoramento Ambiental , Plantas/metabolismo , Solo/química
13.
Phys Rev Lett ; 121(7): 071603, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169053

RESUMO

We describe a family of finite, four-dimensional, L-loop Feynman integrals that involve weight-(L+1) hyperlogarithms integrated over (L-1)-dimensional elliptically fibered varieties we conjecture to be Calabi-Yau manifolds. At three loops, we identify the relevant K3 explicitly and we provide strong evidence that the four-loop integral involves a Calabi-Yau threefold. These integrals are necessary for the representation of amplitudes in many theories-from massless φ^{4} theory to integrable theories including maximally supersymmetric Yang-Mills theory in the planar limit-a fact we demonstrate.

14.
Glob Chang Biol ; 23(3): 1167-1179, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27416555

RESUMO

Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta-analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta-analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62% and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67% and 25.87%, respectively, in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C : N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate-biosphere feedbacks.


Assuntos
Pradaria , Gado , Ciclo do Nitrogênio , Animais , Carbono , Ciclo do Carbono , Ecossistema , Herbivoria , Nitrogênio , Poaceae , Solo
15.
Glob Chang Biol ; 22(9): 3157-69, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26896336

RESUMO

As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2 ]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta-analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta-analysis of 150 multiple-factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2 ] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single-factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2 ] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate-biosphere feedbacks and improve predictions of the future states of the ecological and climate systems.


Assuntos
Ciclo do Carbono , Ecossistema , Solo , Processos Autotróficos , Nitrogênio
16.
Am J Geriatr Cardiol ; 5(6): 22-35, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11416399

RESUMO

Operative risk may change its pattern from time to time. To investigate determinants for operative mortality in patients undergoing CABG since the mid 1980s and the influence of age, gender, and IMAG on mortality, the data of 6,360 patients who underwent CABG from January 1986 through June 1993 were analyzed. Of these patients, 2,153 had SVG alone and 4,207 had IMAG including UIMAG (3,957) and BIMAG (250). Overall mortality was 4.34%. OM (in hospital death) for IMAG (2.69%) was lower than for SVG (7.57%, p is less than 0.0001). There was no difference in mortality between BIMAG (3.2%) and UIMAG patients (2.65%, p equals 0.6) or UIMAG/SVG patients (4.29%, p equals 0.36). Fewer IMAG patients had postoperative complications (LCO, insertion of IABP, prolonged ventilation, reoperation for bleeding, neurological complications, perioperative MI, and infection of legs) than SVG patients. There was no difference in the incidence of sternal infection. To determine risk factors for mortality and the influence of IMAG on the outcome, 82 variables (31 preoperative, 17 intraoperative, and 34 postoperative) were analyzed by univariate analysis. Significant variables or the variables having a trend (p is less than 0.2) to be associated with mortality were included in stepwise multiple logistic regression analyses. Two regression analyses were separately performed. Regression 1 only included pre- and intraoperative variables whereas regression 2 included postoperative variables as well. The logistic regressions demonstrate that preoperative (low EF, age at or above 70, female gender, history of CHF or arrhythmia, and functional Class), intraoperative (emergency operation, reoperation, long perfusion time, and lack of IMAG), and postoperative (complications) variables are independently associated with higher mortality. Female gender is an independent determinant for mortality and not dependent on small body surface area. Neither use of BIMAG or right IMAG, nor number of grafts is associated with the OM. The identification of these risk factors may have important implications in further improvement of the results for CABG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...